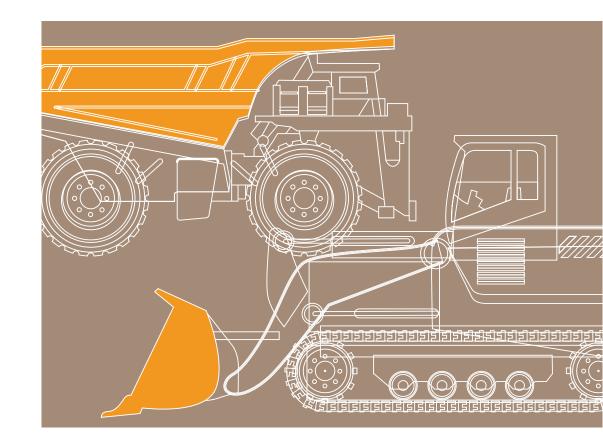
ABREX™


Abrasion resistant steel plate

NIPPON STEEL & SUMITOMO METAL

http://www.nssmc.com/

شرکت تجهیز صنعت هزاره (M.I.P)

تهران، خیابان شهید بهشتی، خیابان سرافراز کوچه حق پرست، پلاک ۶، واحد ۱۰ تلفن: ۷۵– ۸۵ ۱۴ ۸۸ (۲۲۱) فکس: ۳۱ ۷۸ ۸۸ (۲۲۱) پست الکترونیک: info@mip.ir www.mip.co.com

Introducing the ABREX™ Series

The ABREX* Series features 4 standard options of abrasion resistant steel plate in addition to 3 extra tough options - a product range capable of meeting a variety of needs. All of our products are maintained at very low impurity levels, making them well suited to welding and formability.

Specifications by Type and Designation

Type	Designation	Plate Thickness	Brinell Hardn	iess (HBW)*1	Charpy Impact Test (L Direction)*2			
туре	Designation	t (mm)	Aiming	Range	Test Temperature (°C)	Absorbed Energy (J)		
	ABREX 400	6 (4.0) ~100	400	360~440	_	_		
0	ABREX 450	6 (4.5) ~ 50	450	410~490	_	-		
Standard Type	ABREX 500	6 (4.5) ~ 50	500	450~550	_	_		
	ABREX 600	8 ~ 25	600	550~650	_	-		
	ABREX 400LT	6 (4.0) ~ 60	400	360~440	-40	≧27		
Extra Tough Type	ABREX 450LT	6 (4.5) ~ 25	450	410~490	-40	≧27		
	ABREX 500LT	6 (4.5) ~ 25	500	450~550	-40	≧21		

Please consult with us with regard to the figures in parenthesis above.

*1: The Brinell Hardness value is an average of measurements taken from three points on the steel plate surface. A section of the surface from which the decarburized layer is ground off by about 0.7mm should be used as the specimen surface. Prior consultation is recommended in the case of using thicknesses surpassing those listed above.

*2: The Charpy Impact Test shall be applied to steel plates thicker than 12mm

		Chemical Composition (%) *1												
Туре	Designation	С	Si	Mn	P	s	Ni	Cr	Mo	В		CM :kness)*2		
			0.					0.			t≦25	t>25		
	ABREX 400	≦0.21	≦0.70	≦2.00	≦0.025	≦0.010	≦1.00	≦1.20	≦0.60	≦0.005	≦0.30	≦0.35		
Standard Type	ABREX 450	≦0.23	≦0.70	≦2.00	≦0.025	≦0.010	≦1.00	≦1.20	≦0.60	≦0.005	≦0.36	≦0.36		
Standard Type	ABREX 500	≦0.35	≦0.70	≦2.00	≦0.015	≦0.010	≦1.00	≦1.20	≦0.60	≦0.005	≦0.42	≦0.42		
	ABREX 600	≦0.45	≦0.70	≦2.00	≦0.015	≦0.010	≦1.00	≦1.20	≦0.60	≦0.005	≦0.54	_		
	ABREX 400LT	≦0.21	≦1.20	≦2.00	≦0.020	≦0.010	≦1.00	≦1.20	≦0.60	≦0.005	≦0.30	≦0.35		
Extra Tough Type	ABREX 450LT	≦0.28	≦1.20	≦2.00	≦0.020	≦0.010	≦1.00	≦1.20	≦0.60	≦0.005	≦0.36	-		
	ABREX 500LT	≦0.35	≦1.20	≦2.00	≦0.015	≦0.010	≦1.00	≦1.20	≦0.60	≦0.005	≦0.42	_		

*1: Elements other than those listed in the table can be added as necessary.

*2: $PCM = C + \frac{Si}{30} + \frac{Mn}{20} + \frac{Cu}{20} + \frac{Ni}{60} + \frac{Cr}{20} + \frac{Mo}{15} + \frac{V}{10} + 5B$ %)

Typical Properties and Characteristics

			Chen	nical			Mechanic	al Properties	s (Refer	ence Values)			
Time	Decianotion	Thick	Comp	osition	Brinell Hardness	Tensile	e Tests	Ben	ding Te	sts	Charpy Impact Test		
Type	Designation	ness (mm)	Pcm %	Ceq*1		Yield Strength (N/mm) ²	Tensile Strength (N/mm) ²	Bend radius (t:thickness)	Angle	Result	Temp.	Absorbed Energy	
	ABREX 400	25	0.25	0.38	414, 417, 416	1075	1322	3t	180°	No cracking		73	
Standard	ABREX 450	25	0.31	0.50	458, 453, 459	1192	1469	3t	180°	No cracking		57	
Type	ABREX 500	25	0.36	0.54	513, 509, 520	1373	1552	3t	180°	No cracking		43	
	ABREX 600	25	0.50	0.70	611, 606, 601	1568	2058	_	_	_		18	
Extra	ABREX 400LT	60	0.30	0.60	390, 393, 393	1162	1207	3t	180°	No cracking	-40	63	
Tough	ABREX 450LT	25	0.31	0.50	464, 464, 467	1089	1465	3t	180°	No cracking	-40	43	
Type	ABREX 500LT	25	0.37	0.53	507, 510, 507	1198	1680	3t	180°	No cracking	-40	38	
	Test Condition				JIS Z 2243 Surface JIS No. 5T Direction			JIS I	No.1T Dire	ection	2 mmV Notch L Direction		

Precautions for Use

Increasing the thickness of the steel plate will lead to a slight decrease in the hardness of the central portion of the plate. In the event that these steel plates need to perform at high temperatures, please consult with us prior to placing your order. In the event that these steel plates need to perform at low temperatures, please select the Extra Tough steel plate options.

Size Availability

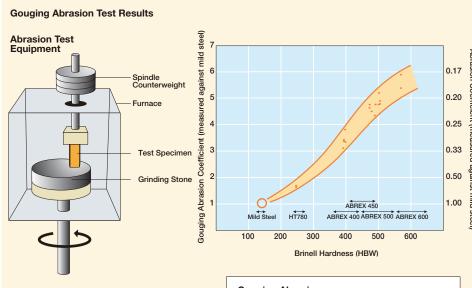
●ABREX 400, 400LT

ABREX	• ABREX 400, 400LT (Length: m														ngth: m)			
Width(mm)	and over	1200 over	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000	4200	4400
Thistones (man)	~1200 and less	~1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000	4200	4400	4500
Thickness(mm) 4 ≤ ≤4.5	anu iess	dilu less																
4.5< ≤6	_		8															
6			10							i								
6< ≤7					i e													
7< ≤8																		
8< ≤9			18				15											
9< ≤10										ĺ						ĺ		
10< ≤12																		
12< ≤14																		
14< ≤16																		
16< ≤18																		
18< ≤20																		
20< ≤22																		
22< ≤24																		
24< ≤26																		
26< ≤28																		
28< ≤30																		
30< ≤32																22	22 21	22
32< ≤34 34< ≤36			23												22	21	20	19
36< ≤38			23											22	20	19	19	18
38< ≤40												22	22	20	19	18	18	17
40< ≤42												20	20	19	18	17	16	16
42< ≤44											22	20	20	18	18	17	16	16
44< ≤46										22	21	19	19	18	17	16	15	15
46< ≤48										21	20	18	18	17	16	15	15	14
48< ≤50									22	20	19	17	17	16	15	15	14	14
50< ≤52									21	20	19	17	17	16	14	14	13	13
52< ≤54									21	19	18	16	16	15	14	14	13	13
54< ≤56								22	20	18	17	15	15	14	13	13	12	12
56< ≤58							22	21	19	17	17	15	15	14	13	13	12	12
58< ≤60						22	22	20	18	16	16	14	14	13	12	12	12	11
60< ≤65			22				20	19	17	15	15	13	13					
65< ≤70			20				18	17	16	14								
70< ≤75			19				17	16	15	13								
75< ≤80			18				16	15										
80< ≤85			17				15											
85< ≤90			16															
90< ≤95			15															
95< ≤100			14															

ABREX 450, 500, 450LT, 500LT

Leng	ıth.	n

3


Width(mm)	1000 and over ~1200	1200 over ~1400	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000	4200 ~	4400
Thickness(mm)	and less	and less	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000	4200	4400	4500
4.5≤ ≤5		8																
5< <6		10																
6≤ ≤7																		
7< ≤8																		
8< ≤9		18																
9< ≤10							13											
10< ≤12																		
12< ≤14																		
14< ≤16																		
16< ≤18																		
18< ≤20																		
20< ≤22																		
22< ≤24																		
24< ≤26																		
26< ≤28																		
28< ≤30		23																
30< ≤32																	22	22
32< ≤34																22	21	20
34< ≤36															22	21	20	19
36< ≤38														22	20	19	19	18
38< ≤40												22	22	20	19	18	18	17
40< ≤42												20	20	19	18	17	16	16
42< ≤44											22	20	20	18	18	17	16	16
44< ≤46										22	21	19	19	18	17	16	15	15
46< ≤48										21	20	18	18	17	16	15	15	14
48< ≤50									22	20	19	17	17	16	15	15	14	14

(1) The figures quoted in the tables above represent the lengths of steel plate that can be manufactured. (2) Please consult us about the range indicated by the color pink in the tables above. (3) We will clarify issues related to flatness and rust-resistance with regard to the manufacture of one-sided short blast steel plate with a thickness of less than 15.0mm. (4) Please consult us with regard to dimensions outside of the range detailed in the above tables. (5) The minimum plate length is 3m. (6) Please ask us for details about the manufacturing range for ABREX 600.

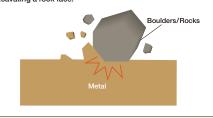
Abrasion Resistance

The loss in the mass of steel due to abrasion decreases as the surface hardness of steel increases. Accordingly, it is necessary for steel, for which abrasion resistance is required, to have higher surface hardness. NSSMC's abrasion resistant ABREX steel plate is designed by placing priority on resistance to abrasion caused by earth and sand. It offers excellent scratching abrasion resistance 2 to 5 times that specified for mild steel.

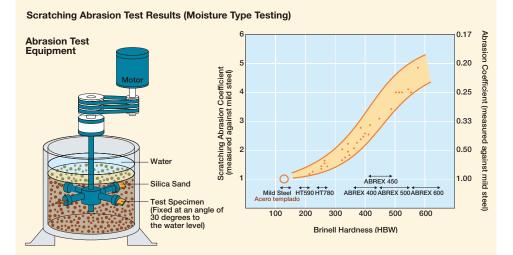
Properties and Characteristics

Test Conditions

The test specimen is pressed against the grinding stone and the grinding stone is rotated. The resulting abrasion is measured.


Rotating speed : 30rpm
Test duration : 20min
Load : 29.4kg/cm²
Ambient temperature : 200°C

Grinding Stone : Special grindstone for


use at high temperatures

Gouging Abrasion

Boulders and rocks cause abrasion when they gouge and scrape a metallic surface. Due to repeated heavy loads and impacts, relatively large portions of the metallic surface can suffer damage, leading to the formation of grooves and dents. This can occur to shovels, etc. when tasked with excavating a rock face.

Properties and Characteristics

Test Conditions

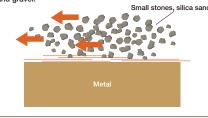
Silica sand is suspended in water and the test specimen spun through this water. The resulting abrasion is measured.

Container : 580mm in diameter

Sand : The silica sand is in suspension in

the water to a maximum level some 150mm above the test specimen.

Water : Water is added until it reaches a level some 10mm above the level


of the sand.

Test specimen: 50mm x 50mm; 5mm thick

Rotating speed: 3.7m/s

Scratching Abrasion

Comparatively small stones and silica sand caused abrasion when they come into contact with a metallic surface. As the load and force of impact is slight, any bumps and scrapes are relatively small. This can occur to the steel used in the load-bearing bay of a dump truck, etc. when filled with earth and gravel.

Precautions for Use

The amount of abrasion will change depending on the usage environment.

Weldability

Abrasion resistant steel is extremely strong and as a result it has a high sensitivity to cracking at low temperatures. What this means in terms of welding is that it underlines the importance of selecting the most appropriate welding materials as well as managing the pre-heating process correctly. Moreover, the constraints on couplers as well as other weld criteria such as welding heat input and weld bead length, etc. in addition to weld time, environmental conditions and the management of weld materials all require special attention.

A Guide to Pre-Heating Temperatures

	Steel Material	Plate Thickness (mm)										
	Steel Material	4.5~11	~20	~25	~36	~50	~100					
ABREX 400	Normal Welding (Small Constraints)	RT	RT	50°C	50°C	75°C	125°C					
ABREX 400	Repair Welding (Medium Constraints)	RT	RT	75°C	75°C	100°C	150°C					
ABREX 450	Normal Welding (Small Constraints)	RT	RT	50°C	75°C	75°C	_					
ABREX 450	Repair Welding (Medium Constraints)	RT	50°C	75°C	100°C	100°C	_					
ABREX 500	Normal Welding (Small Constraints)	RT	50°C	75°C	100°C	125°C	_					
ADREX 300	Repair Welding (Medium Constraints)	RT	100°C	100°C	150°C	150°C	_					

RT: Room Temperature

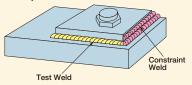
In order to avoid low temperature cracking, the steel plate needs to undergo the required preheating. This can be approximated depending on various factors such as the carbon equivalent, the hydrogen content of the weld metal, the yield strength of the weld metal, the heat input and plate thickness to name but a few*1. The preheating temperatures shown in the table are calculations for temperatures used in gas-shield welding of soft joints, with a heat input of 1.7kJ/mm and assuming a weld metal hydrogen content dispersal of 3ml/100a*1.

However, appropriate preheating temperatures are also affected by external factors such as outdoor temperature, path numbers, groove form as well as the preheating method, etc. so please use these figures as a guide.

*1: pp347-357 No. 3 Volume 13, Collection of Papers from the Japan Welding Society (1995); N.Yurioka and T.Kasuya Also: P163 Steel Materials and Welding, Welding Digest 10 (1999), Sanpo Publishing Inc.

Properties and Characteristics

CTS Cracking Test Results (JIS Z3154: Lap Joint Weld Cracking Test)


Designation	Plate Thickness (mm)	Cracki	ng: Y/N
Designation	Plate Thickness (Illin)	SMAW	GMAW
ABREX 400	25	0	0
ABREX 450	25	0	0
ABREX 500	25	0	0

O: No cracking

Test Method

Item	SMAW	GMAW
Temperature	Room Temperature	Room Temperature
Heat Input kJ/mm	1.73	0.85
Weld Material	LF52	SCH60
Hydrogen Content cc/100g	3.48	1.62

Test Specimen

Welding Materials

Recommended Welding Materials

General information

Due to their Chemical composition and low carbon equivalents, ABREX abrasion resistant plates are well-suited for welding. All tested fusion welding methods can be employed, but metal inert gas shielded arc welding has proved especially effective (low hydrogen input). For reasons of crack prevention, basic-coated electrodes with controlled hydrogen content should be used for manual electric arc welding. Prior to welding, the electrodes must be dried according to manufacturer instructions. The diffusible hydrogen content should be HD≤ 5 ml/100 g WM.

Filler materials and welding conditions (preheating, welding parameters)

The selection of the fillers depends on the strength requirements made on the welded joint. The following filler materials have proved practically:

Recommended filler materials

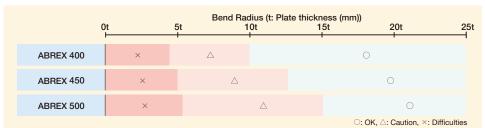
Electrodes	Inert gas welding wire							
E 7018-1 (e. g. Bohler FOX EV 50)	ER 80 S-G (e. g. Bohler DMO-IG)							
for welded join	nts of higher strength							
E 10018-G (M) (e. g. Bohler FOX EV 75)	ER 110 S-G (e. g. Bohler X70-IG)							

If the design requires that the welds have the same wear-resistance as the base material, the top layers can be welded with wear-resistant electrodes (e.g. UTP DUR 400 or UTP DUR 600) or equivalent inert gas welding wires.

Stainless steel welding consumables

Consumables of ausstenitic stainless steels can be used for the welding of all our products. They allow welding at room temperature without preheating. We recommend using of FOX A7, FOX A7-A or UTP 630.

With regard to welds involving ABREX 600, please use austenite type weld materials such as FOX A7, FOX A7-A or UTP 630.

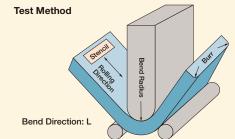

Precautions for Use

Take care when preheating – heating a steel plate over the recommended preheating temperature will cause the plate to lose its hardness. Please ensure that the steel plate is not heated over 200 degrees Celsius.

Bending Formability

Compared to regular steel, abrasion resistant steel has a lower elongation value and as a result, it is important to take steps to prevent fabrication cracks. Please consider the bend radius, quality of gas cut surface and the bend direction when undertaking fabrication.

Guidelines for Maximum Bend Radii

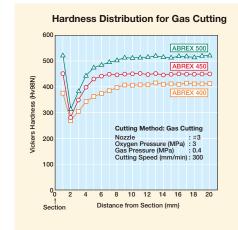

The values shown above are a guideline for bending an edge piece in the longitudinal direction (rolling direction of plates) referred to as L. In the event of bending in the transverse direction (width direction of plates) referred to as T, please add in one more t value. Bend conditions (atmospheric temperature and moisture, facilities, edge processing, etc.) can lead to fluctuations in the maximum bend radius. These values are a guideline.

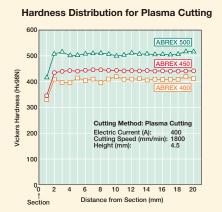
In the event that the steel plate is undergoing bending for a specific purpose, please contact NSSMC immediately after placing your order. We do not recommend subjecting ABREX 600 to bending.

Properties and Characteristics

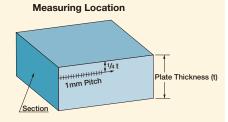
Wide Bend Test Results

	Plate	Test	Bend	Bend	Cracking: Y/N					
Designation	Thickness t (mm)	Specimen Width (mm)	Direction	Angle	1t	2t	3t	5t		
ABREX 400	25	120	L,	180°	×	×	0	0		
ABREX 450	25	120	L	180°	×	×	0	0		
ABREX 500	25	120	L	180°	×	×	\triangle	0		
Test Method			7	○: No crad	ized cracking	, ×: Cracking				


Precautions for Use


Because production of abrasion-resistant steel plate involves special heat treatment, the avoidance of hot working is recommended. Any notches or burrs on the sheared edge can lead to deterioration in the hardness of gas-cut sections, so it is recommended that any gas-cut sections be smoothed with a grinder, etc. In the event of bending abrasion-resistant steel to an extremely shallow bending radius, the corners should be beveled and care should be taken to ensure that the bend circumference be implemented in the L rolling direction. Please note that with abrasion-resistant steel plate, spring-back is greater than with conventional steel. In the event where the room temperature is less than 0 degrees Celsius, please avoid undertaking any bending procedures.

Thermal Cutting Performance


ABREX can be cut with gas, plasma and laser cutters, but the heat generated by these cutting techniques also affects the steel. Please select the best cutting solution to meet your needs once you have studied the affect of the cutting procedure and method.

Properties and Characteristics

Precautions for Use

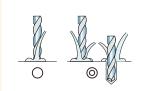
In the event that room temperature is 5 degree Celsius or below, some preheating will be required. Please avoid the use of cold water during cutting.

Please take special care when cutting small pieces or thin widths, as the hardness of the steel can deteriorate. Notches that result after cutting should be smoothed away with a grinder.

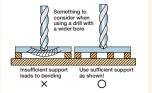
As ABREX 600 steel plate can crack easily, we recommend preheating to 50 degrees Celsius and then cutting with

As ABREX 600 steel plate can crack easily, we recommend preheating to 50 degrees Celsius and then cutting with an acetylene gas cutter.

Drilling Workability



As ABREX steel plate is extremely hard and this can make it difficult to form and process, we recommend any drilling take place in a machining center using an ultra-hard metal alloy drill. However, for smaller jobs and working with components, it is often the case that boor-bank drilling machines and high-speed steel drills are used, so here we will introduce our recommended approach to drilling ABREX steel plate using a high-speed steel drill.


(1) Points to Note when Drilling

 When attaching the drill, please ensure that the external vibration of the tip of the drill does not exceed 0.03mm.

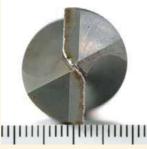
② We recommend an aqueous drill lubricant with a high degree of transparency. Please ensure you have sufficient lubricant for the drilling process.

③ Ensure that the steel plate is secured to prevent vibrations, movement and any bending or warping during drilling.

(2) Recommended Conditions for Drilling

These are the recommended conditions for using a radial boor bank drilling machine with ABREX steel plate.

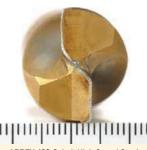
Type	Туре	Drillina	φ	5	φ.	10	φ.	15	φ	20	φ:	25	φ;	30
of Steel	of Drill	Speed (m/min)	Rotation Speed (min ⁻¹)	Feed Rate (mm/rev)										
ABREX 500	Powder High Speed Steel	5 ~ 8	320 ~ 510	0.05 ~ 0.10	160 ~ 250	0.10 ~ 0.20	110 ~ 170	0.15 ~ 0.30	80 ~ 130	0.15 ~ 0.30	65 ~ 100	0.15 ~ 0.30	55 ~ 85	0.15 ~ 0.30
APPEY 400	Powder High Speed Steel	6 ~ 10	380 ~ 640	0.05 0.10	190 ~ 320	0.10 ~ 0.20	130 ~ 210	0.15 ~ 0.30	95 ~ 160	0.15 0.30	75 ~ 130	0.15 ~ 0.30	65 ~ 110	0.15 ~ 0.30
ABREX 400	Cobalt High Speed Steel	5 ~ 8	320 ~ 510	0.05 ~ 0.10	160 ~ 250	0.10 ~ 0.20	110 ~ 170	0.15 ~ 0.30	80 ~ 130	0.15 ~ 0.30	65 ~ 100	0.15 ~ 0.30	55 ~ 85	0.15 ~ 0.30


- These values are a guide. Depending on how the steel plate is secured and the hardness of the machining tool, sometimes the appropriate settings will fall outside of this range, so before performing the actual drilling required, we recommend test drilling under the same conditions.
- •We do not recommend using a Cobalt High Speed Steel for drilling ABREX 500 steel plate.
- Generally speaking, in terms of performance we recommend high settings for both the drilling speed (rotation speed) and the feed rate. However, this will have an impact on the working life of the drill. Conversely, if you wish to prioritize the working lifespan on the drill as well as the precision of the work, we recommend low settings for both the drilling speed (rotation speed) and the feed rate.
- During drilling, the turnings from the drilling process can sometimes become very long and yet still be attached to the steel plate. When this occurs, trimming these turnings will reduce the burden on the drill.
- These recommendations are made with the proviso that an aqueous drill lubricant is being used. We recommend a good quality aqueous drill lubricant used at less than 20x dilution.
- •When using a non-aqueous drill lubricant or when an emulsion lubricant has been diluted over 20 times, please reduce the drilling speed by 20%.

(3) Examples of Drill Process Data (for reference purposes)

This table shows reference data for drilling using a radial boor bank drilling machine.

Type of Steel	Type of Drill	Drilling Depth (mm)	Machine Tool	Drill Lubricant	Drill Diameter (mm)	Drill Speed (min-1)	Rotation Speed (min-1)	Feed Rate (mm/rev)	Plated Through Hole	Length of Cut (mm)
ABREX 500	Powder High Speed Steel	25	Standing radial boor bank drilling machine	aqueous drill lubricant at 15x dilution	φ10	5.2	165	0.15	31	775
					φ20	4.7	75	0.25	53	1325
					φ30	4.7	50	0.25	20	500
	Powder High Speed Steel	25	Standing radial boor bank drilling machine	aqueous drill lubricant at 15x dilution	φ10	6.3	200	0.15	78	1950
ABREX 400					φ20	6.9	110	0.25	136	3400
					φ30	7.1	75	0.25	42	1050
	Cobalt High Speed Steel		Standing radial boor bank drilling machine	aqueous drill lubricant at 15x dilution	φ10	5.2	165	0.15	123	3075
					φ20	4.7	75	0.25	52	1300
					φ30	4.7	50	0.25	34	850


Close-up Photos of Drill Bits (All 3 have a diameter of 20mm)

ABREX 500 Powder High Speed Steel 4.7m/min 0.25mm/rev Plated Through Hole: 53

ABREX 400 Powder High Speed Steel 4.7m/min 0.25mm/rev Plated Through Hole: 136

ABREX 400 Cobalt High Speed Steel 4.7m/min 0.15mm/rev Plated Through Hole: 52

Examples of the Product in Use

Bulldozer

Crusher

Dump Truck

Excavator

Primer

ABREX will be shipped with primer paint upon order.

Designation	Normal Color		
ABREX 400, ABREX 400LT	Brown		
ABREX 450. ABREX 450LT	Green		
ABREX 500, ABREX 500LT	Gray		
ABREX 600	Blue		

Reference

NSSMC Specifications; Comparison with Former Specifications

Former NSC Product Name	Former Sumitomo Metals Product Name	New NSSMC Name		
_	SUMIHARD-K340	_		
WEL-HARD400 WEL-TEN AR360E	SUMIHARD-K400	ABREX 400		
WEL-TEN AR400E	SUMIHARD-K450	ABREX 450		
WEL-HARD500 WEL-TEN AR500E	SUMIHARD-K500	ABREX 500		
_	_	ABREX 600		
-	_	ABREX 400LT		
_	_	ABREX 450LT		
_	_	ABREX 500LT		

- With regard to products that have been discontinued or where the product name no longer exists, NSSMC can continue to manufacture said products in line with any existing agreement and specifications.
- * With regard to special specification products not included in the above table, please contact us about these specific products.

Hardness Conversion Table

	Vickers	Brinell Hardness 10mm sphere; 29400N Load	Rockwell	Hardness	OI.	T 1 0 1	
	Hardness	Tungsten Carbide Sphere	B Scale 980N Load Sphere 1/16in Diameter	C Scale 1470N Load Sphere 1/16in Diameter Brale Indenter	Shore Hardness	Tensile Strength (N/mm²) (approximate values)	
	600 590 580 570 560	564 554 545 535 525	_ _ _ _ _	55.2 54.7 54.1 53.6 53.0	74 — 72 — 71		
	550 540 530 520 510	517 507 497 488 479	- - - - -	52.3 51.7 51.1 50.5 49.8	69 67 	1905 1860 1825 1795 1750	
	500 490 480 470 460	471 460 452 442 433	- - - -	49.1 48.4 47.7 46.9 46.1	66 64 62	1705 1660 1620 1570 1530	
	450 440 430 420 410	425 415 405 397 388	- - - -	45.3 44.5 43.6 42.7 41.8	59 - 57 -	1495 1460 1410 1370 1330	
Ī	400 390 380 370 360	379 369 360 350 341	(110.0) (109.0)	40.8 39.8 38.8 37.7 36.5	55 52 50	1290 1240 1205 1170 1130	
	350 340 330 320 310	331 322 312 303 294	(108.0) — (107.0) —	35.5 34.4 33.3 32.2 31.0	 47 45 	1095 1070 1035 1005 980	
	300 290 280 270 260	284 275 266 256 248	(105.5) (104.5) (103.5) (102.0) (101.0)	29.8 28.5 27.1 25.6 24.0	42 41 40 38 37	950 915 890 855 825	